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ABSTRACT 
Studying the solution of the systems of linear algebraic equations 
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 is a classical problem which is important in applied mathematics.  For system 
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-vectors to be solved for, an iterative decreasing dimension method (IDDM) is given in (Keskin and Aydın 2007).  According to this method, the solution of the system 
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symbols are used same as in the relevant article (Keskin and Aydın 2007). 
When a computer is used for the computations of the solution of the problem 
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, errors occur naturally.  Because the computers make the calculations with computer numbers.  The computer numbers set (or format set) is defined by a set of F = F(,  p ,  p+ ,  k), where pZ- , k,  p+Z+ and - base.  The set F is characterized by the characteristics 0 = [image: image14.wmf]1
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, 1 = 1k ,  = [image: image15.wmf]+
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) (Godunov et all 1993, Akın and Bulgak 1998). 
The operator fl ( fl : D  F ) converts the real numbers to floating point numbers with rounding or chopping errors, where D = [, ]R. According to Wilkinson model the operator fl is defined as 
zD fl(z) = z(1+), || ≤ u, 
where u = [image: image17.png]


 – rounding and u = [image: image18.png]


 – chopping (Wilkinson 1963, Goldberg 1991,  Golub and Van Loan 1996, Shampine et all 1997, Bjoerck and Dahlquist 2008).
In this study, the effects of floating point arithmetic in the computation of solution of the matrix equation 
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 with IDDM are investigated.  Some upper bounds are obtained for ||
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 is the computed value of the value 
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 in floating point arithmetic.  The obtained results are supported by numerical examples. 
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